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Abstract

Plane sound waves in a smooth pipe turbulent boundary layer are known to be more strongly damped when the acoustic

boundary layer becomes thicker than the viscous sublayer. The attenuation constants that govern this phenomenon are

accurately predicted by the mathematical model proposed by M.S. Howe [The damping of sound by wall turbulent shear

layers. Journal of the Acoustical Society of America 98(3) (1995) 1725–1730. Also in: Acoustics of Fluid–Structure

Interactions, Cambridge University Press, Cambridge, 1998]. This model assumes uniform mean core flow. The present

paper proposes a variant of this model which is based on the assumption of parallel sheared mean core flow. Predictions of

the two approaches are compared.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The damping of plane sound waves in a smooth pipe carrying a fully developed turbulent mean flow has
been the subject of several experimental and theoretical studies. An inclusive review of the previous work can
be found in Peters et al. [1]. The experimental data reveal that, in the presence of a fully developed subsonic
turbulent mean flow, the damping of plane sound waves becomes stronger when the acoustic boundary layers
becomes thicker than the viscous sublayer. The analytical model proposed by Howe [2] appears to capture this
effect quite accurately. Recent experiments by Allam and Åbom [3] re-confirm the accuracy of Howe’s model.
It is thus desirable to express this model in transfer matrix form for use in flow duct acoustics calculations.
This seems to be readily achievable, since the governing dispersion relation is based on the continuity and axial
momentum equations (e�iot time dependence being assumed),
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respectively, or the wave equation that results from these upon elimination of the axial component of the
acoustic particle velocity, v, namely,
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Here, Y denotes Howe’s turbulent boundary layer admittance, which is defined as ratio of the normal
component of the acoustic particle velocity at the border of the wall boundary layer to the acoustic pressure,
and the remaining symbols have the usual meanings (o denotes the radian frequency, t the time, i the unit
imaginary number, x the duct axis, p the acoustic pressure, U the mean flow velocity, c0 and r0 the speed of
sound and the mean density of the fluid, respectively, and Dp the hydraulic diameter of the duct). The reader is
referred to Appendix A for the formulae used for the computation of Y and to Ref. [2] for its derivation. Howe
[2] assumes a uniform core flow with a thin boundary layer so that the acoustic pressure and particle velocity
terms in Eqs. (1)–(3) can be defined as average values over the duct cross-sectional area, rather than assuming
them to be plane ab initio. The resulting dispersion equation can be solved only numerically, since Y depends
on the wavenumbers, however, upon assuming that frequency is high enough, the wavenumbers are obtained
in the approximate analytical form proposed by Howe [2]. This approximate solution can be used to construct
a diagonal transfer matrix, but it will not be exactly consistent with Eqs. (1) and (2).

The dependence of Y on the wavenumbers of Eqs. (1) and (2) arises, because the acoustic field depicted by
these equations is tacitly assumed to extend into the boundary layer. In the present analysis, this assumption is
abandoned and the problem is modeled as that of plane sound wave propagation in a uniform pipe carrying a
parallel sheared mean flow, the duct wall being assumed to obey Howe’s admittance with the Kirchhoff
wavenumbers [1]. This model yields a simple transfer matrix with closed expressions for the wavenumbers and
the attenuation constants are in close agreement with Howe’s model.
2. Analysis

The model adopted in the present analysis is a uniform duct carrying a parallel sheared mean flow, with
possibly some slip flow of velocity w0 at the wall and the wall obeying some impedance relationship. In this
model, the mean flow represents the core flow in the actual duct; the slip flow corresponds to the mean flow at
the edge of the boundary layer; and, it is assumed that, the acoustic phenomena in the boundary layer can be
simulated by a wall impedance model.

The continuity and axial momentum equations which govern the propagation of plane sound waves in this
uniform duct can be expressed as [4]
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respectively. Here, m denotes the fluctuating component of the rate of radial mass flow into the pipe per unit
volume, b is a non-dimensional parameter that depends on the mean flow profile [4] and U is now understood
as the cross-sectional average of the mean flow velocity. Since a subsonic low Mach number mean flow is of
interest and bo0.1 for turbulent mean flow profiles, bU2/c0

2
51 with less than about 1% error and,

consequently, this term is neglected in the subsequent analysis. It should be noted that Eqs. (4) and (5) assume
that the acoustic pressure and density are isentropically related. This assumption is not strictly true with
sheared parallel mean flow, however, for subsonic low Mach numbers, it provides an accurate representation
of the linearized energy equation for plane wave propagation [4].

The fluctuating mass inflow at the border of the boundary layer can be expressed as m ¼ �4r0u/Dp, where u

denotes the radial component of the particle velocity. Then, introducing the boundary layer admittance,
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m ¼ �4r0Yp/Dp. Substituting this in Eqs. (4) and (5) yields, respectively,
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The slip velocity, w0, is kept as a model parameter in the following analysis, although it will in general be small
compared to U to justify the assumption of w0/UE0, or, fE1 in Eq. (10), since the boundary layer is thin. On
the same premise, Dp can still be taken as the pipe diameter. The wall impedance is given by Howe’s boundary
layer admittance, the impinging axial wave assumed to have the Kirchhoff wavenumbers for fundamental
visco-thermal propagation with no mean flow [1]. With this assumption, which may be justified on the premise
that visco-thermal effects dominate in the boundary layer, Eqs. (6) and (7) can be solved relatively easily. The
effects of the mean flow gradient in the boundary layer and particle velocity incompatibility at the edge of the
boundary layer are assumed to be negligible.

It is convenient to introduce the transformation

p ¼ pþ þ p�; r0c0v ¼ pþ � p�, (8)

which, when substituted in Eqs. (6) and (7), yields
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The general solution of Eq. (9) can be expressed in transfer matrix form as
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Here, K+ and K� denote the wavenumbers, which are the eigenvalues of the square matrix in Eq. (9) divided
by the unit imaginary number, for acoustic wave motion in forward (with the mean flow) and backward
directions, respectively, and U is the modal matrix whose columns are the eigenvectors corresponding to the
two wavenumbers.

The wavenumbers are:
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The imaginary part of which determines the attenuation constants:
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The modal matrix is
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A high frequency approximation, which is similar to that used in deriving the wavenumbers in Ref. [2], can be
obtained from the first order expansion of the square root in Eq. (12):
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3. Numerical results and conclusion

Shown in Figs. 1 and 2 is the variation of the attenuation ratio a8/a0 with the normalized boundary layer
thickness, dþA , where a0 denotes the Kirchhoff solution for the visco-thermal attenuation constant for the case
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Fig. 1. The attenuation ratio for the k0R ¼ 0.0323 case tested in Ref. [3], Dp ¼ 35mm. Dashed curves are Howe’s solution, solid curves are

the present solution with f ¼ 1. The upper curves correspond to the backward wave. The dash-dotted curve scales dþA with 10M.
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Fig. 2. The attenuation ratio for the k0R ¼ 0.0808 case tested in Ref. [3], Dp ¼ 35mm. Dashed curves are Howe’s solution, solid curves are

the present solution with f ¼ 1. The upper curves correspond to the backward wave. The dash-dotted curve scales dþA with 10M.
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of zero mean flow, for two frequencies tested by Allam and Åbom [3]. The attenuation ratios are plotted as
function of dþA for uniformity with their results. Expression for dþA and a0 are given in Appendix A. dþA
can be scaled with the average mean flow velocity Mach number M by using the dash-dot curves in Figs. 1
and 2.

The present solution for the forward wave almost coincides with Howe’s solution; however, the values
predicted for the attenuation constant of the backward wave are slightly smaller than Howe’s solution, but
look a little bit closer to the experimental results [3] for relatively large dþA . The experimental points
are not shown, because they could not be read with good accuracy from the logarithmic scales of the published
figures.

It is noteworthy that the present results given Figs. 1 and 2 are for f ¼ 1, that is, the no-slip flow case. As
meaningful small slip flow is introduced, the separation of the forward and backward attenuation ratios tends
to decrease slightly. In the limiting case of uniform mean flow, f ¼ 0, however, the attenuation ratios become
grossly inaccurate.

The sound field in the duct can be decomposed into the sum of forward and backward components if
the modal matrix is diagonal. If the diagonal terms are normalized to unity for the cases considered in Figs. 1
and 2, the real and imaginary parts of the off-diagonal elements of U are found to be close to zero within 2%.
Thus, the plane acoustic wave field is not truly canonical, but the coupling can be considered small enough to
be neglected for practical purposes in these cases.

Appendix A

Howe [2] boundary layer admittance can be expressed as
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specific heat coefficient at constant pressure, k the thermal conductivity, K0 the propagation constant of the
axial wave motion in the boundary layer, and functions Fn and Fw are
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, stE0.7 is turbulence Prandtl number for air [2], kKE0.41 is the von Karman
constant [2], dþA denotes the normalized boundary layer thickness [3], ARe ¼ r0Rc0/m is the acoustic Reynold’s
number, u� the friction velocity, which is determined from Prandtl’s logarithmic law
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and the function F0(x, y) is
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where H ð1Þn denotes Hankel function of the first kind of order n. In Eq. (A.2), the parameter l
defines the frequency dependence of the viscous sublayer thickness and is computed from the empirical
equation [2]
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In the present analysis, K0 is assumed to be given by the Kirchhoff solution for fundamental mode visco-
thermal propagation [1], that is,
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to first order in s. It is usually convenient to normalize the attenuation constants for the non-zero mean flow
case with the attenuation constant for this case, namely, a0 ¼ Im(k0K0).

The normalized boundary layer thickness, dþA can be expressed as function of the mean velocity Mach
number as
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where u�/U depends on M as depicted by Eq. (A.3).
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